If it's not what You are looking for type in the equation solver your own equation and let us solve it.
22=a^2
We move all terms to the left:
22-(a^2)=0
We add all the numbers together, and all the variables
-1a^2+22=0
a = -1; b = 0; c = +22;
Δ = b2-4ac
Δ = 02-4·(-1)·22
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{22}}{2*-1}=\frac{0-2\sqrt{22}}{-2} =-\frac{2\sqrt{22}}{-2} =-\frac{\sqrt{22}}{-1} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{22}}{2*-1}=\frac{0+2\sqrt{22}}{-2} =\frac{2\sqrt{22}}{-2} =\frac{\sqrt{22}}{-1} $
| 5(x+7)–4(x+9)=2(2x–6,5) | | 48=4j=8 | | –5g=–6−6g | | 8x+8=10x+8 | | 29=2m-21 | | 7(2r+4)=42 | | 29=2m-221 | | 10(x-3)=175 | | 12=18-d | | 15=9j-3 | | 3(5x÷3-1)=8 | | 2=12-d | | 14=20-j | | 49=6r+7 | | 27-2(6-x)=96-× | | 3x÷4=24x÷4=93x÷4=24 | | 8x+14=-2x+50 | | 26+n=63 | | 18=2s+12 | | 15x+14–7x–28+6x+6=0 | | 8-y=12-6 | | 3(r-10)=-9 | | 5(x-4)+15=-10(x-1)+6 | | 4(2.71828)^(x-7)=88 | | 8x+2=(5x-13)/2 | | 2x+6x-4x=10+3 | | -4(y+1)=2(1-y)-6 | | 32=5y-7 | | x=1.7-0.2x | | 5(x+3)–2=53 | | 22=n+2 | | 3(r-3)=3 |